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Nonlinear Stability of Incoherence 
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A mean-field model of nonlinearly coupled oscillators with randomly distributed 
frequencies and subject to independent external white noises is analyzed in the 
thermodynamic limit. When the frequency distribution is bimodal, new results 
include subcritical spontaneous stationary synchronization of the oscillators, 
supercritical time-periodic synchronization, bistability, and hysteretic pheno- 
mena. Bifurcating synchronized states are asymptotically constructed near bifur- 
cation values of the coupling strength, and their nonlinear stability properties 
ascertained. 
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1. I N T R O D U C T I O N  

A long-standing intellectual aspiration in many fields of science is to under- 
stand stable temporal  and spat iotemporal  phenomena  in macroscopic  
systems from a microscopic point  of  view, perhaps by means of  a statistical 
description. A relatively simple case in point  is the self-synchronization 
of  oscillator populations.  Transit ion from incoherence to collective 
synchronizat ion is a ubiquitous phenomenon  in several fields of science: 
chemical processes, (1) biological organization,  (2'4) and some models of 
dynamics  of  charge density waves in quasi-one-dimensional  metalsJ  3) 
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Winfree (2~ first proposed to model the phenomenon of collective syn- 
chronization in terms of populations of coupled nonlinear oscillators, each 
having its own globally stable limit cycle. Kuramoto (5) then put forth a 
mathematically tractable model, containing all the main features of interest: 
Each oscillator runs at a frequency picked up from a given distribution, 
and all of them are coupled by a mean-field interaction. Thus, each mem- 
ber of the population tries to oscillate independently at its own frequency, 
while the coupling tends to synchronize it to all others. When the coupling 
is sufficiently weak, the oscillators run incoherently, while beyond some 
threshold, collective synchronization is established. In the limit of infinitely 
many oscillators, the degree of synchronization is measured by an order 
parameter that is nonzero in the synchronized state. This behavior is 
reminiscent of phase transitions in ferromagnetic materials (where the "dis- 
ordering" role of the distribution of intrinsic frequencies is played by ther- 
mal white noise), whose dynamics was studied (with mean field coupling) 
by Desai and Zwanzig (6) and by Dawson. (7) New features introduced by 
the distribution of the intrinsic parameters of the oscillators can be 
appreciated in the dynamics of certain simple spin-glass models. ~8) Strogatz 
and Mirollo ~9) first studied rigorously the linear stability of the incoherent 
state in Kuramoto's model. They discovered that the incoherent state has 
pathological properties: The state with zero order-parameter is nonunique 
and is neutrally stable for coupling smaller than a certain critical value. 
Beyond such a critical value, the incoherent state becomes unstable and the 
synchronized state bifurcates from it. To elucidate these peculiarities, 
Strogatz and Mirollo added a small independent white-noise term to each 
oscillator. Such noise terms can be interpreted, e.g., as thermal fluctua- 
tions(3,6 8) or rapid fluctuations of the intrinsic frequencies of the 
oscillators. ~ In fact, synchronization of coupled oscillators having the 
same frequency but driven by white-noise sources has been studied in its 
own sake, (1'1~ and even without assuming mean-field coupling. (12) See 
also ref. 13, where evidence is shown for synchronization of a distribution 
of oscillators subject to hierarchical (rather than mean-field) coupling. 

In this paper we study the Kuramoto's model with noise, i.e., 

K N 
0i = ~oi + {,(t) + ~ =  sin(0j- 0~), i=  1, 2,..., N (1.1) 

~i(t) being independent white-noise processes with 

(r = o  

( {r {j(t) ) = 2D 6~j 6 ( s -  t) 
(1.2t 
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Here 0~ and co, represent the phase and the natural frequency of the ith 
oscillator, K~> 0 is the coupling strength, N is the size of the population, 
and D ~> 0 represents the noise strength. Brackets denote an average over 
realizations of the noise. The frequencies 03~ are chosen at random from a 
distribution with density g(co) which will be specified later. 

The model (1.1) (1.2) can be rewritten in a more convenient form by 
defining the order-parameter 

1 N 
reiO = ~ Z e@ (1.3) 

j=l  

Here r(t)>10 measures the phase coherence of the oscillators, and ~(t) 
measures the average phase. In terms of (1.3), (1.1) becomes 

Oi=coi+Krsin(O-Oi)+~i(t) ,  i =  1, 2,..., N (1.4) 

(1.4) is a system of coupled Langevin equations. In the limit of infinitely 
many oscillators, N--+ o% it is possible to derive (14) a nonlinear Fokker-  
Planck equation for the one-oscillator probability density, p(O, t, 03),(9~ 

c~t - D  c302 c~0 (pv) (1.5) 

where the drift velocity is given by 

v(O, t, co) = 03 + K r  s i n ( O  - 0)  (1.6) 

and the order-parameter amplitude r(t) and phase O(t) are given in terms 
of p and g by 

~2r~ ~+vo 
re i~" ei~ t, 03) g(co) dO de) (1.7) 

The probability density has to be 2~-periodic in the angle 0 and nor- 
malized, 

2re 
fo p(O, t, co) dO = 1 (1.8) 

(1.5)-(1.8) can be formally derived by the following procedure sketched in 
ref. 14: Write p(O, t, 03) in terms of the N-oscillator probability density PN 
solution of the linear Fokker-Planck equation associated to the system 
(1.4) for an initial condition where PN is the product of N one-oscillator 
probability densities (molecular chaos). Then write the path integral 
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representation of PN in the resulting expression and perform approximately 
the integrals by means of the saddle point method in the limit N ~ oo. The 
resulting expression for p(O, t, cn) is then shown to obey (1.5)-(1.8). 
A rigorous study of the limit N =  ~ and proof of the previous formulas 
may follow from an extension of Dawson's procedures (v) to a system with 
varying frequencies such as (1.4). 

Strogatz and Mirollo (9) considered (1.5)-(1.8) with a frequency dis- 
tribution g(co) which was even and nonincreasing, as did Kuramoto (5) 
before them. They showed that for K <  K c the incoherent equiprobability 
distribution 

1 
po(O, t, e)) =_ ~ (1.9) 

is linearly stable, and linearly unstable for K >  K c. At K =  Kc a new 
stationary solution (the partially synchronized state (5'9)) branches off (1.9). 
As D~0, (1.9) is still unstable for K > K c  [=2/~g(0) at D = 0 ] ,  but it is 
neutrally stable for K <  Kc: The whole spectrum of the equation linearized 
about (1.9) collapses to the imaginary axis. Furthermore, (1.9) is no longer 
the only solution of (1.5)-(1.8) with zero order-parameter: There are 
infinitely many "rotating waves" with r = 0. (9) Thus, the noise D could act 
as a small viscosity parameter selecting (1.9) as D J,0 among all the com- 
peting incoherent solutions with r = 0. (A different way of selecting one 
stable solution without adding noise is explained in the Appendix, which is 
based on work by Keller and Bonilla. (15)) 

In spite of the great advance in terms of understanding and method- 
ology brought out by Strogatz and Mirollo's work, a few important 
problems remain. Paramount among them is the problem of nonlinear 
stability of both incoherent and synchronized solutions of (1.5)-(1.8) for 
D > 0 (and, more difficult, in the singular limit D + 0). Another question, 
not addressed previously, is the phenomenology that frequency distribu- 
tions different from even nonincreasing functions may bring out. Indeed, 
some nontrivial new features appear when g(~o) has two maxima (bimodal 
distribution). In particular, changes in the character of bifurcating 
stationary solutions (from supercritical to subcritical) occur when the 
distance between the peaks of g(co) surpasses a critical value. Again, in the 
dynamics of van Hemmen spin glasses, bimodal distributions change the 
stability and character of solutions bifurcating from the paramagnetic one 
[equivalent to our Eq. (1.9)]. (8~ 

In this paper, we show that a bimodal distribution may drastically 
alter the class of stable solutions of the problem (1.5)-(1.8): Probability 
densities with a time-periodic order-parameter may appear. These features 
had been found previously only in more complicated models. (16) When the 
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system is characterized by a bimodal distribution with a doubly delta- 
peaked frequency distribution, it can be viewed as representing a pair of 
coupled homogeneous populations, each exhibiting supercritical stationary 
synchronization when coupling is set to zero [-except that, with this inter- 
pretation, the order-parameter (1.7) would not contain an integration over 
the frequency ~o]. This point of view may help in understanding the 
appearance of time-periodic synchronization in terms of the desynchroniza- 
tion between the two subpopulations above, due to a too large difference 
in their collective frequencies. 

Therefore, we address both types of problems: Nonlinear stability of 
solutions of (1.5)-(1.8) and new phenomenology brought out by bimodal 
distributions g(co). Nonlinear stability is addressed by constructing bifur- 
cating solutions and examining their stability with multiscale methods. (s'11~ 
The rest of the paper is organized as follows. In Section 2, we consider the 
stationary states of the model, devoting special attention to the incoherent 
solution for which linear stability is studied. The bimodal frequency dis- 
tribution leads to new phenomena that have not been observed previously: 
subcritical bifurcation from incoherence of stationary solutions and Hopf 
bifurcation as well. In Section 3, we construct the time-periodic branch of 
solutions bifurcating from incoherence and show that they are always non- 
linearly stable. We stress that time-periodic solutions exist because the dis- 
tribution is bimodal. The main results are finally summarized in Section 4. 
The Appendix contains a proof that the incoherent solution is stable in a 
weak sense among all solutions with zero order-parameter in the limits 
D=0 ,  N--* oo. 

2. STATIONARY STATES AND LINEAR STABILITY 

The stationary solutions of the nonlinear Fokker-Planck problem 
(1.5)-(1.8) can be represented by 

po(O, co) = ~ exp 

;? { '  } x dO1 exp - ~ [coO1 + K r c o s ( O - O - - O l ) ]  (2.1a) 

x dO2 exp - ~ [o)02 + Kr cos(~k - O1 - 02)] (2.1b) 
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Here, r and ~ are obtained by writing po(0, 0)) instead of p(O, t, 0)) in 
(1.7).(17) 

Among these solutions, the only one characterized by a zero order- 
parameter (r = 0) is the incoherent solution, 

1 
P~ 0)) - 2re (2.2) 

A natural question about the incoherent solution concerns its stability 
properties. The linear stability analysis has been done rigorously by 
Strogatz and Mirollo. (93 They found that only the discrete spectrum of the 
linearized problem is relevant to the stability issue. The eigenvalues 2 are 
given by (9) 

K [  +~ g(v) dv = 1 (2.3) 
2 0  o~ 2 + D + i v  

Further investigations based on (2.3) concerned only symmetric, one- 
humped, nonincreasing distributions g(0)). In this case there is at most 
one eigenvalue, which is necessarily real(9'18); if it exists, then 2 > - D .  
Moreover, for K >  Kc [a critical coupling, corresponding to ;~ = 0 in (2.3)], 
a new stationary state branches off from the incoherent solution, charac-. 
terized by r > 0, corresponding to a synchronized state. The new solution is 
always stable because of the principle of exchange of stabilities in bifurca- 
tion theory. (19) 

We now show that qualitatively new features appear when g(0)) is a 
bimodal distribution. In this case, (2.3) has more than one solution, 2, 
possibly complex. For the sake of concreteness, we shall confine ourselves 
to the following case(S): 

1 
g(0)) = ~ [6(0) + 0)0) + 6(0) - 0)0)] (2.4) 

In this case, there are two eigenvalues explicitly given by 

K 1 2 +- = - D + ~ - + ~  (K 2 -  1 6 ~ )  1/2 (2.5) 

The stability boundaries for the incoherent solution can be calculated by 
equating to zero the greatest of Re 2 + and Re 2 . The result is depicted in 
Fig. 1. 

When the coupling is small enough (K<  2D), the incoherent solution 
is linearly stable for all COo, whereas for a coupling strong enough (K>  4D), 
the incoherent solution is always linearly unstable. For intermediate 
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stable 

I 

2 4 

unstable 

K/D 

Fig, 1. Stability boundaries for the incoherent solution in the parameter space (K/D, mUD) 
for the bimodal distribution (2.4). The dashed line separates the region where eigenvalues 
are real (below the line) from that where they are complex conjugate (above the line). 
Incoherence is linearly stable in the shadowed region and linearly unstable in the rest of the 
first quadrant. 

couplings, 2D<K<4D, the incoherent solution may become linearly 
unstable in two different ways: 

For  o) o > D, two complex conjugate eigenvalues cross the imaginary 
axis onto the right half-plane as K becomes larger than 

Kc = 4D (2.6) 

At K~ = 4D a branch of solutions with time-periodic order-parameter bifur- 
cates from the incoherent solution. We shall construct this bifurcating 
branch and analyze its stability in the next section. 

For co 0 < D one eigenvalue in (2.5) becomes positive as K/D becomes 
larger than Kc/D, given by 

Kc=2 (1 +c~176 (2.7) 
D D 2 ] 

The stationary state that branches off the incoherent solution at K~ given 
by (2.7) can also be constructed by the method of the next section, but we 
shall use instead the more direct approach based on Eqs. (2.1) and (1.7) 
and the principle of exchange of stabilities for the same purpose [see ref. 17 
for a similar construction with unimodal g(co)]. We insert (2.1) into the 
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right-hand side of (1.7) (multiplied by e-i~ and expand the resulting 
expression in powers of Kr/D. The result is 

r = - ~  do 1 + ~o2/D 2 

K2r2f +m 1 - 2(_o2/D 2 ] 

2D 2 -oo de) (1 + (D2/D2) 2 (4 -t'- (,02/0 2) g((D) -~- O( r  4) (2.8) 

According to the implicit function theorem, r = 0 is an isolated solution of 
(2.8) for K C K c ,  where 

2D 
Kc - ~_~+~ do) [g(co)/(1 + co2/D2)] (2.9) 

Note that (2.9) reduces to (2.7) when g(~o) is the distribution (2.4). 
The coefficient of r a in (2.8) may be positive or negative, according to 

the shape of the frequency distribution g(~o). In fact, the integrand in this 
coefficient is tl(co/D) g(co), where 

1 - 2s 2 
t/(s) = (1 + s2) 2 (4 + s 2) (2.10) 

From the shape of q(s), depicted in Fig. 2, it is clear that the coefficient of 
r 2 o n  the right-hand side of (2.8) will be negative for unimodal distribu- 

n(s) 

1 
4 

Fig. 2. The function q(s)= (1 -2s2)/(1 + s2) 2 (4 + s 2) in the coefficient of r 2 that decides the 
direction of the bifurcating branch of stationary states. 
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t ions g(co), whereas it may become positive for a b imoda l  g(co) with 
sufficiently separa ted  peaks. Thus,  for the distr ibution (2.4), (2.8) can be 
solved for r= > 0 and K > Kc if co o < co*, 

co* =D/x/2 (2.11) 

The solution of (2.8) is then 

K -  X~ D 3 + K~/2D~ ~7= D 
r= -gf g~. -3---K--7-.~) +O(IK-K~I), co<-~ (2.12) 

r T 
0 < CO O < CO0* 

(a) 

- -  1, 
0 K Kc 

(b) r - 

Fig. 3. 

COo" < COo < D 

/ 

Kc K 

(a) Supercritical stationary synchronization of the oscillators when 0 < oJ o < on* = 
D/xfl2. (b)Subcritical stationary synchronization for D/x/2 < 0% < D. 
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(2.12) is a supercritical bifurcating solution, and therefore it is stable; (19) see 
Fig. 3a. On the other hand, when coo > co*, the solution of (2.8) exists only 
if K <  Kc and is therefore unstable (19) (Fig. 3b). The upper branch of stable 
stationary solutions in Fig. 3b can be found approximately for coo close to 
co* by calculating explicitly the O(r 4) term in (2.8). (11) The result of this 
straightforward calculation is that the coefficient of r 4 in (2.8), evaluated at 
co = co*, is negative, which confirms the picture in Fig. 3b. That r ]" 1 as 
K ~  +or for any COo>0 is straightforwardly proven by evaluating the 
integrals in (1.7) and in the stationary solution (2.1) by means of Laplace's 
method. 

3. T I M E - P E R I O D I C  STATES 

In the previous section we have shown that the incoherent solution 
becomes linearly unstable with purely imaginary eigenvalues at Kc = 4D 
when coo > D. Here we shall construct the branch of time-periodic solutions 
of (1.5)-(1.8) that bifurcates from the incoherent solution at K=K c. We 
use the two-time-scale method as in Kogelman and Keller, (2~ which not 
only yields an approximate expression for the bifurcating solution, but also 
gives its nonlinear stability properties. 

Let us define the small parameter e that measures the departure from 
the critical value Kc = 4D by 

K=Kc+eZK2, 0 < e ~ l  (3.1) 

K2 = -t-1 has to be determined later according to the direction of the bifur- 
cating branch. The definition (3.1) will be justified later. The probability 
density p(O, t, co; e) will be sought for according to the Ansatz (8'11) 

p(O, t, co; e) = ~ exp e6rj(O, t, "c, co) + O(e 4) (3.2) 
j 1 

= (K-  Kc)t = s2K2t (3.3) 

Near K = K c ,  small disturbances from the incoherent solution decay or 
grow according to the values of the factor 

exp{2(K)t}~exp{Re C?2(Kc)~(K-Kc)t+i Im 2(Kr t} (3.4) 

where 2(K) is the complex eigenvalue of Section 2 for which Re 2(Kc) = 0. 
Equation (3.4) motivates the introduction of the slow and fast time scales 
(3.3) and t, respectively. The exponential Ansatz (3.2) was introduced 
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in ref. 14 (see also refs. 8 and 11) motivated by the failure of the usual 
expansion of p in power series of e: An algebraic Ansatz yields a vertical 
bifurcating branch to all orders in e. (1~) 

We now insert (3.1)-(3.3) in the governing equations (1.5)-(1.8) and 
equate terms of equal order in e in the resulting expressions. Thus, we 
obtain a hierarchy of equations which, up to O034), is 

Lrr 3 

Lcr1=-(c?,-Dc32 +coOo) r r l -K~Ree- i~176  (3.5a) 

f ~  a~(0, t, r, co) dO = 0 (3.5b) 

0 -2 
L{7 2 = - L  2 - KcS~ Im e -i~ ( ei~ o" 1 ) } (3.6a) 

f~= lf2= 
a2(O,t,z, co) d O = - ~ j  ~ [adO, t,z, co)]ZdO (3.6b) 

( 1) 
= - K z [ O ~ a l - R e e - i ~  i~ rrl) ] - L  a1~+-6~ 3 

- K~Oo { a l  Im e i~ (ei~ G2 +ff--~)-[-(G2-}-ff--~) 

(3.7a) 

Im e - i~ ( e iO', ~7 t ) )  
) 

J0 ff3(O't'Y"co) dO=-- 0"10"2-~0" ~ dO (3 .7b)  

In Eqs. (3.5) (3.7) we have defined the scalar product: 

27r :r co) fl(O, co) g(co) dco dO (3.8) 
-oo 

The solution of the homogeneous linear equation (3.5) is given by (9) 

al(O, t, r, co) - A(z) ei(at+ o)+ cc (3.9) 
D + i(co + f2) 

plus terms that decay exponentially on the fast time scale. These terms 
correspond to the rest of the spectrum (discrete and continuous) of the 
o p e r a t o r  L. (9) Since we are interested in studying stability, therefore in 
the long-time limit t-+ +oo, we neglect these terms. In (3.9), "cc" means 
the complex conjugate of the preceding term, and A(r) is an as yet undeter- 
mined complex function of the slow time z. At K =  Kc, the eigenvalues 2 + 
become 

2+-= +_iO, (2 ---= ((DI --  D2) 1/2 (3.10) 

822/67/1-2-21 
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Inserting (3.9) in the right-hand side of (3.6a), we see that it is propor- 
tional to d2(a'+~ Thus, we seek a solution o- 2 of the form 

a2 = B1(z) + B2(z) ei2(gat+~ - cc (3.11) 

B 1 and B 2 are determined from Eq. (3.6), with the result 

IA(z)] 2 113 D ] 
0"2(0'  t '  "b" CO) = -- D2 ; ~ 7t-- co)2 q- 2 D + i ( ( 2 + c o )  

A2(~) ei2(~+~ 
x + cc (3.12) 

[D + i((2 + co)] [-2D + i(O + co)] 

We now try to solve (3.7) by introducing (3.9) and (3.12) into the right- 
hand side of (3.7), which contains terms proportional to e *l~ o~, ei3(~,+ 0), 
and their cc. The term proportional to e i(a'+~ yields in general secular 
terms (which are unbounded on the fast time scale) in the corresponding 
part of a3, say a~ '). We therefore choose the term proportional to K2 so as 
to eliminate these secular terms. Notice that this explains the scaling (3.1). 
To eliminate the secular terms, we need a solution of the equation 

La~X) = Q,(.c, 09)e i~a'+ o) (3.13) 

that is 2~-periodic in 0 and bounded in t, that is, 

0"~ 1) = Pl(r,  co) e i(e'+~ (3.14) 

Ql(z, co) is obtained by inserting (3.9) and (3.12) in (3.7), and is given by 

Q l ( ' r ' c o ) = - K 2  D + i ( ( 2 + 0 9 )  + 2 D ( l ' z ) - [ D + i ( f 2 + c ~  

1 } A ]AI 2 (3.15a) 
ED + i(f2 + co)] [2D + i(~ + co)] 

i(O + 09) (3.15b) 
Z(co) = [D 2 + (s + (o)2] [D + i((2 + co)] [2D + i(f2 + co)] 

We determine P1 by substitution of (3.14) into (3.13), 

Kc 
[ D +  i(g2+09)] P 1 - - ~ -  (1, P1)  = Q1 

Then we can solve for PI '  

Kc( 1, P1)  + Q1 
P1 - 2[-D + i(s + 09)] D + i((2 + o9) (3.16) 
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From (2.3), we know that �89 1/[D + i(f2 + co)] ) = 1, so that the scalar 
product of 1 with (3.16) gives 

t ' / D + i(f2 +co)' Ql(~ T) = 0  (3.17) 

(cf. ref. 9, p. 624). Equation (3.17) is a nonresonance condition: When it 
holds, no secular terms appear in cr 3. From (3.15) and (3.17), we obtain the 
following evolution equation for A(r): 

~-~= - K 2  IAt A 

(1/2D)(1, 1/[D+i(~?+co)]) aZ(Kc) 
(1, 1/[D+i(f2+co)] 2) OK 

(1, 1/[D+i(f2+~o)] 2 E2D + i(f2+ co)] ) 
7 = ( 1 , 1 / [ D + i ( ~ + o ) ]  2) 

g2 {2f2(4coo 2 + 9D 2) - iD(14oo~ - 9D2)} 
D(16co 2 + 9D 2) 

(3.18a) 

1 ( 1 -  i ~ - - -~ ) (3 .18b)  
4 

(3.18c) 

(3.18) has the following periodic solution: 

A(~) = Re iq'~ -t0) (3.19a) 

/ Re .~1 \ 1,/2 

Re 21 
~9 o = I m  21 - I m  7 - -  (3.1%) 

Re 7 

Note that 7 is a function of D and ~0 o. Since (2 2 = 0) 2 - D 2 > 0 ,  Re 7 > 0 in 
(3.18c). Then K 2 = 1 and (3.19) exists for K >  Kc. An explicit solution of 
(3.18a) shows that any nonzero initial value A(0) tends to (3.19a) as 
r = e2t ~ +oo. Thus, (3.19) corresponds to the following periodic solution 
of (1.5)-(1.8) (except for a phase shift to) which is asymptotically stable: 

p(O, t, co )~  ~-~ exp { I K -  Kc] 1/2 
R 

D + i(f2 + o)) 

x exp{i[(f2 + e2K2Oo) t + 0] } + cc} (3.20) 

as K.[ K c (Re 7 > 0, K2 = 1 ). This situation is depicted in Fig. 4. 
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Had Re 7 been negative in (3.18c) [which is not the case for the 
bimodal g(e))], K 2 = - 1 ,  (3.19b), and (3.19a) would be reached from any 
initial condition A ( 0 ) # 0  as r = - e 2 t ~  +oe. The limit of long positive 
times corresponds to z--* - o %  and then A ( r ) ~  0, which means that the 
periodic solution (3.20) (now existing for K <  K~) is unstable if Re 7 < 0. 

Notice that a small-amplitude equation of the form of (3.18a) was 
earlier derived for similar problems in ref. 21, where, however, there was no 
frequency distribution. 

( )  A 
a r! 

i 

ReT> 0 

J 

0 K c K 

(b) r 

ReT< 0 

0 K c K" 

Fig. 4. (a) Supercritical Hopf synchronization of the oscillators when Re 7 >0, Kc=4D, 
c%>D. (b) Subcritical bifurcation for Re T<0 [not realized by the special bimodal 
distribution (2.4)]. 
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4. S U M M A R Y  A N D  C O N C L U S I O N S  

We have analyzed the synchronization of an infinite population of 
oscillators with randomly distributed frequencies, coupled nonlinearly and 
subject to external white noises. While this problem was studied earlier by 
several authors for unimodal frequency distribution functions g(CO) (5,9,17) 
we have found qualitatively new results for a bimodal g(co). First of all, the 
linear stability analysis of the incoherent solution (where oscillators are 
desynchronized) indicates that, for oscillator couplings K large enough, 
incoherence may become unstable both steadily and oscillatorily in time 
(Fig. 1). For unimodal g(co), only stationary solutions could bifurcate from 
incoherence. ~ For our bimodal g(co), a stable stationary solution with 
r > 0  (representing synchronization of the oscillators) branches off 
incoherence for K >  K C if the separation between the peaks of g(co), 2co0, is 
small enough (Fig. 3a). When co o ~ (D/x/2, D), the synchronized stationary 
state branches off subcritically from incoherence (Fig. 3b). Finally, when 
co0>D, a stable synchronized state with time-periodic order-parameter 
bifurcates from incoherence for K >  K,, = 4D (Fig. 4a). 

We have constructed all bifurcating solutions in a neighborhood of the 
critical coupling Kc by using explicit formulas in the case of stationary 
solutions or by means of multitime scales in the case of oscillatory solu- 
tions. The latter method also yields the nonlinear stability or instability of 
the solutions. Putting together all our findings, we conjecture the bifurca- 
tion diagram of Fig. 5 for co o >D.  Further study is needed to ascertain 

. . . . .  unstable 
- -  stable 

stationary 

" " - - . .  stationary 

oscillatory ' " - . .  

/ ......... iii , . . . . . . . . . . . . . .  , 
Kc=4D K* K 

Fig. 5. Conjectured global bifurcation diagram for co o > D, indicating coexistence of stable 
stationary and time-periodic solutions for certain values of the coupling constant K. 
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where the Hopf branch of time-periodic solutions ends. Notice that 
coexistence of stable stationary solutions exists for K1 < K < Kc. = 4D, while 
for K >  K~ there is bistability between synchronized stationary and time- 
periodic states. 

After this paper was completed, numerical Brownian simulations 
conducted by J .M. Casado showed evidence for the stability of the 
synchronized stationary solutions, at least for K > 4 D .  These simulations 
show an interesting transient behavior of the model for intermediate values 
of K that deserves further analysis. 

APPENDIX.  STABILITY ( IN THE WEAK SENSE) 
OF INCOHERENCE W H E N  D = 0  

In this Appendix we show that, among all solutions with r = 0  of 
the model (1.1) with D = 0 and N--+ 0% incoherence is stable in a weak 
sense as t--+ _+oo. If r = 0, D = 0, (1.I) describes a collection of oscillators 
rotating at constant frequencies, which is the model considered in ref. 15. 
Consider the fraction of oscillators having their angles between 0 and 
0 + dO and frequencies between ~o and co + &o: 

1 N / 2  

p (O, t, Z 
n = - - N / 2  m = - - o o  

6 ( O ~ ( O ) + o ) . t - O - 2 u m ) 6 ( c o . - ~ )  (A.1) 

Notice that P~v is a 2~-periodic function of 0 with this definition. We want 
to show that P~v tends to 1/2~ in a weak sense, i.e., that as N--+ oo and 
t - +  o0, 

(pN, tp )~ f+~176 &O pN(O, t, (o) ~(O, O0) "~1 f+~ dco g(oo) 0(0, oo) 
co 

(A.2) 

for all tp(0, ~o) smooth enough. 
In fact, by using (A.1) in (A.2), we get 

1 N / 2  

2 
n = - - N / 2  m = - - a o  

6(0,(0) + c%t - 0 - 2grn) r co,) 

In the continuum limit, N--+ c~, the sum over the oscillators becomes an 
integral over the frequencies with density g(co): 

1 N/2 ~ + co 

O N ~ ~ &o g(oJ) 
n = N / 2  
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so that 

(PN, 0 ) ~ 6 (0 , (0 )  + COt -- 0 -- 27zm) r CO) g(co) de) 
- - o o  m E  - - : ~  

t , , =  g, 0, t g 
--or3~ 

As t ~ 0% the sum in (A.3) converges to a Riemann integral. If we write 
dy = 2re~t, we obtain from (A.3) the result 

1 f+~ 
lim lim (Px, 0 ) = ~  4 '  g ( Y )  0(0 ,  y )  (A.4) 

We have therefore proved that  the weak limit as t ~ _oo  for the density 
functions PN ( N ~  oo) that  have r = 0 is the incoherent  distribution 1/27r. 
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